Using as

The GNU Assembler

Version 2.12.1

The Free Software Foundation Inc. thanks The Nice Computer Company of Australia for
loaning Dean Elsner to write the first (Vax) version of as for Project GNU. The proprietors,
management and staff of TNCCA thank FSF for distracting the boss while they got some
work done.

Dean Elsner, Jay Fenlason & friends

Using as
Edited by Cygnus Support

Copyright (© 1991, 92, 93, 94, 95, 96, 97, 98, 99, 2000, 2001, 2002 Free Software Foundation,
Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free
Documentation License".

Chapter 1: Overview 1

1 Overview

This manual is a user guide to the GNU assembler as.

Here is a brief summary of how to invoke as. For details, see Chapter 2 [Comand-Line
Options|, page 13.

as [-alcdhlns] [=file]] [-D] [-defsym sym=val]
[-f] [-gstabs] [-gdwarf2] [~help] [-I dir]
(-J1 [-K1 [-L]
[listing-lhs-width=NUM] [-listing-lhs-width2=NUM]
[listing-rhs-width=NUM1] [-listing-cont-lines=NUM]
[keep-locals] [-o objfile] [-R] [-statistics] [-v]
[-version] [—version] [-W] [-warn] [—fatal-warnings]
[-w] [-x] [-Z] [-target-help] [target-options]
[—Ifiles ...]

Target Alpha options:
[-mcpu]
[-mdebug | -no-mdebug]
[-relax] [-g] [-Gsize]
[-F] [-32addr]

Target ARC options:
[-marc[56|7]8]]
[-EB|-EL]

Target ARM options:
[-mcpu=processor [+extension. . .]]
[-march=architecture [+extension. . .]1]
[-mfpu=floating-point-fromat]
[-mthumb]
[-EB|-EL]
[-mapcs-32 | -mapcs-26 | -mapcs-float |
-mapcs-reentrant]
[-mthumb-interwork] [-moabi] [-k]

Target CRIS options:

[-underscore | —no-underscore]
[-pic] [-N]
[~emulation=criself | —emulation=crisaout]

Target D10V options:
[-0]

Target D30V options:
[-O[-n|-N]

Target 1386 options:
[-32]-64]

Target 1960 options:
[-ACA|-ACA_A|-ACB|-ACC|-AKA|-AKB|
-AKC|-AMC]
[-b] [-no-relax]

Target M32R options:
[-m32rx | —[no-]warn-explicit-parallel-conflicts |
~Win]p]

Target M680X0 options:
[-1] [-m68000|-m68010|-m68020] . . .]

Target M68HC11 options:
[-m68hcll|-m68hcl2]
[force-long-branchs] [—short-branchs]
[-strict-direct-mode] [—print-insn-syntax]
[-print-opcodes] [-generate-example]

Target MCORE options:
[-jsri2bsr] [-sifilter] [-relax]
[-mcpu=[2101340]]

Target MIPS options:
[-nocpp] [-EL] [-EB] [-G num] [-mcpu=CPU]
[-mipsl] [-mips2] [-mips3] [-mips4] [-mips5]
[-mips32] [-mips64]
[-m4650] [-no-m4650]
[-trap] [-break] [-n]
[-emulation=name]

Target MMIX options:
[-fixed-special-register-names] [—globalize-symbols]
[-gnu-syntax] [-relax] [-mo-predefined-symbols]
[-no-expand] [-no-merge-gregs] [-x]
[linker-allocated-gregs]

Target PDP11 options:
[-mpic [-mno-pic] [-mall] [-mno-extensions]
[-mextension | -mno-extension]
[-mcpu] [-mmachine]

Target picoJava options:
[-mb |-me]

Target PowerPC' options:

[-mpwrx | -mpwr2 | -mpwr |-m601 | -mppc [-mppc32|-m603 | -m604 |
-m403 [-m405 | -mppc64 | -m620 | -mppc64bridge | -mbooke |
-mbooke32 | -mbooke64]

[-mcom |-many | -maltivec] [-memb]

Using as

Chapter 1: Overview 3

[-mregnames | -mno-regnames]

[-mrelocatable | -mrelocatable-lib]

[-mlittle | -mlittle-endian | -mbig | -mbig-endian]
[-msolaris | -mno-solaris]

Target SPARC options:
[-Av6|-AvT7|-Av8|-Asparclet | -Asparclite

-Av8plus|-Av8plusal-Av9|-Av9a]

[-xarch=v8plus | -xarch=v8plusal [-bump]

[-321]-64]
-al[cdhlmns]
Turn on listings, in any of a variety of ways:
-ac omit false conditionals
-ad omit debugging directives
-ah include high-level source
-al include assembly
—-am include macro expansions
-an omit forms processing
-as include symbols
=file set the name of the listing file

-D

You may combine these options; for example, use ‘~aln’ for assembly listing
without forms processing. The ‘=file’ option, if used, must be the last one.
By itself, ‘-a’ defaults to ‘-ahls’.

Ignored. This option is accepted for script compatibility with calls to other
assemblers.

--defsym sym=value

-f

--gstabs

--gdwarf2

--help

Define the symbol sym to be value before assembling the input file. value must
be an integer constant. As in C, a leading ‘0x’ indicates a hexadecimal value,
and a leading ‘0’ indicates an octal value.

“fast” —skip whitespace and comment preprocessing (assume source is compiler
output).

Generate stabs debugging information for each assembler line. This may help
debugging assembler code, if the debugger can handle it.

Generate DWARF2 debugging information for each assembler line. This may
help debugging assembler code, if the debugger can handle it. Note - this option
is only supported by some targets, not all of them.

Print a summary of the command line options and exit.

-—-target-help

Print a summary of all target specific options and exit.

-1 dir

Using as

Add directory dir to the search list for .include directives.
Don’t warn about signed overflow.

Issue warnings when difference tables altered for long displacements.

--keep-locals

Keep (in the symbol table) local symbols. On traditional a.out systems these
start with ‘L’, but different systems have different local label prefixes.

--listing-lhs-width=number

Set the maximum width, in words, of the output data column for an assembler
listing to number.

--listing-lhs-width2=number

Set the maximum width, in words, of the output data column for continuation
lines in an assembler listing to number.

--listing-rhs-width=number

Set the maximum width of an input source line, as displayed in a listing, to
number bytes.

--listing-cont-lines=number

Set the maximum number of lines printed in a listing for a single line of input
to number + 1.

-o objfile Name the object-file output from as objfile.
-R Fold the data section into the text section.
—--statistics

Print the maximum space (in bytes) and total time (in seconds) used by assem-
bly.

--strip-local-absolute

-V

Remove local absolute symbols from the outgoing symbol table.

-version Print the as version.

—--version

-W

—-no-warn

Print the as version and exit.

Suppress warning messages.

--fatal-warnings

——warn

Treat warnings as errors.

Don’t suppress warning messages or treat them as errors.
Ignored.

Ignored.

Generate an object file even after errors.

Chapter 1: Overview 5

-— | files ...
Standard input, or source files to assemble.

The following options are available when as is configured for an ARC processor.

-marc[5|6]78]
This option selects the core processor variant.

-EB | -EL Select either big-endian (-EB) or little-endian (-EL) output.
The following options are available when as is configured for the ARM processor family.

-mcpu=processor [+extension. . .]
Specify which ARM processor variant is the target.

-march=architecture [+extension. . .]
Specify which ARM architecture variant is used by the target.

-mf pu=floating-point-format
Select which Floating Point architecture is the target.

-mthumb Enable Thumb only instruction decoding.

-mapcs-32 | -mapcs-26 | -mapcs-float | -mapcs-reentrant | -moabi
Select which procedure calling convention is in use.

-EB | -EL Select either big-endian (-EB) or little-endian (-EL) output.

-mthumb-interwork
Specify that the code has been generated with interworking between Thumb
and ARM code in mind.

-k Specify that PIC code has been generated.

See the info pages for documentation of the CRIS-specific options.

The following options are available when as is configured for a D10V processor.

-0 Optimize output by parallelizing instructions.

The following options are available when as is configured for a D30V processor.

-0 Optimize output by parallelizing instructions.
-n Warn when nops are generated.
-N Warn when a nop after a 32-bit multiply instruction is generated.

The following options are available when as is configured for the Intel 80960 processor.

—-ACA | -ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC
Specify which variant of the 960 architecture is the target.

-b Add code to collect statistics about branches taken.

-no-relax
Do not alter compare-and-branch instructions for long displacements; error if
necessary.

The following options are available when as is configured for the Mitsubishi M32R series.

6 Using as

--m32rx Specify which processor in the M32R family is the target. The default is nor-
mally the M32R, but this option changes it to the M32RX.

--warn-explicit-parallel-conflicts or —--Wp
Produce warning messages when questionable parallel constructs are encoun-
tered.

--no-warn-explicit-parallel-conflicts or —-Wnp
Do not produce warning messages when questionable parallel constructs are
encountered.

The following options are available when as is configured for the Motorola 68000 series.
-1 Shorten references to undefined symbols, to one word instead of two.

-m68000 | -m68008 | -m68010 | -m68020 | -m68030

| -m68040 | -m68060 | -m68302 | -m68331 | -m68332

| -m68333 | -m68340 | -mcpu32 | -m5200
Specify what processor in the 68000 family is the target. The default is normally
the 68020, but this can be changed at configuration time.

-m68881 | -m68882 | -mno-68881 | -mno-68882
The target machine does (or does not) have a floating-point coprocessor. The
default is to assume a coprocessor for 68020, 68030, and cpu32. Although the
basic 68000 is not compatible with the 68881, a combination of the two can
be specified, since it’s possible to do emulation of the coprocessor instructions
with the main processor.

-m68851 | -mno-68851
The target machine does (or does not) have a memory-management unit co-
processor. The default is to assume an MMU for 68020 and up.

For details about the PDP-11 machine dependent features options, see Section 8.21.1
[PDP-11-Options|, page 140.

-mpic | -mno-pic
Generate position-independent (or position-dependent) code. The default is
‘-mpic’.

-mall

-mall-extensions
Enable all instruction set extensions. This is the default.

-mno-extensions
Disable all instruction set extensions.

-mextension | -mno-extension
Enable (or disable) a particular instruction set extension.

-mcpu Enable the instruction set extensions supported by a particular CPU, and dis-
able all other extensions.

-mmachine
Enable the instruction set extensions supported by a particular machine model,
and disable all other extensions.

Chapter 1: Overview 7

The following options are available when as is configured for a picoJava processor.

-mb Generate “big endian” format output.
-ml Generate “little endian” format output.

The following options are available when as is configured for the Motorola 68HC11 or
68HC12 series.

-m68hcll | -m68hcl2
Specify what processor is the target. The default is defined by the configuration
option when building the assembler.

--force-long-branchs
Relative branches are turned into absolute ones. This concerns conditional
branches, unconditional branches and branches to a sub routine.

-S | --short-branchs
Do not turn relative branchs into absolute ones when the offset is out of range.

-—strict-direct-mode
Do not turn the direct addressing mode into extended addressing mode when
the instruction does not support direct addressing mode.

--print-insn-syntax
Print the syntax of instruction in case of error.

—--print-opcodes
print the list of instructions with syntax and then exit.

--generate-example
print an example of instruction for each possible instruction and then exit. This
option is only useful for testing as.

The following options are available when as is configured for the SPARC architecture:

-Av6 | -Av7 | -Av8 | -Asparclet | -Asparclite
-Av8plus | -Av8plusa | -Av9 | -Av9a
Explicitly select a variant of the SPARC architecture.

‘-Av8plus’ and ‘-Av8plusa’ select a 32 bit environment. ‘-Av9’ and ‘-Av9a’
select a 64 bit environment.

‘~Av8plusa’ and ‘-Av9a’ enable the SPARC V9 instruction set with Ultra-
SPARC extensions.

-xarch=v8plus | -xarch=v8plusa
For compatibility with the Solaris v9 assembler. These options are equivalent
to -Av8plus and -Av8plusa, respectively.

-bump Warn when the assembler switches to another architecture.
The following options are available when as is configured for a MIPS processor.

-G num This option sets the largest size of an object that can be referenced implicitly
with the gp register. It is only accepted for targets that use ECOFF format,
such as a DECstation running Ultrix. The default value is 8.

8 Using as

-EB Generate “big endian” format output.

-EL Generate “little endian” format output.

-mipsl

-mips2

-mips3

-mips4

-mips32

-mips64 Generate code for a particular MIPS Instruction Set Architecture level.
‘-mipsl’ corresponds to the R2000 and R3000 processors, ‘-mips2’ to the
R6000 processor, and ‘-mips3’ to the R4000 processor. ‘-mipsb’, ‘-mips32’,
and ‘-mips64’ correspond to generic MIPS V, MIPS32, and MIPS64 ISA
processors, respectively.

-m4650

-no-m4650
Generate code for the MIPS R4650 chip. This tells the assembler to accept
the ‘mad’ and ‘madu’ instruction, and to not schedule ‘nop’ instructions around
accesses to the ‘HI’ and ‘L0’ registers. ‘-no-m4650° turns off this option.

-mcpu=CPU

Generate code for a particular MIPS cpu. It is exactly equivalent to ‘-mcpu’,
except that there are more value of cpu understood.

—-—emulation=name

-nocpp
--trap
--no-trap
—--break

—--no-break

This option causes as to emulate as configured for some other target, in all
respects, including output format (choosing between ELF and ECOFF only),
handling of pseudo-opcodes which may generate debugging information or store
symbol table information, and default endianness. The available configuration
names are: ‘mipsecoff’, ‘mipself’, ‘mipslecoff’, ‘mipsbecoff’, ‘mipslelf’,
‘mipsbelf’. The first two do not alter the default endianness from that of the
primary target for which the assembler was configured; the others change the
default to little- or big-endian as indicated by the ‘b’ or ‘1’ in the name. Using
‘~EB’ or ‘-EL’ will override the endianness selection in any case.

This option is currently supported only when the primary target as is config-
ured for is a MIPS ELF or ECOFF target. Furthermore, the primary target
or others specified with ‘--enable-targets=...’ at configuration time must
include support for the other format, if both are to be available. For example,
the Irix 5 configuration includes support for both.

Eventually, this option will support more configurations, with more fine-grained
control over the assembler’s behavior, and will be supported for more processors.

as ignores this option. It is accepted for compatibility with the native tools.

Control how to deal with multiplication overflow and division by zero. ‘--trap’

3

or ‘--no-break’ (which are synonyms) take a trap exception (and only work

Chapter 1: Overview 9

for Instruction Set Architecture level 2 and higher); ‘--break’ or ‘--no-trap’
(also synonyms, and the default) take a break exception.
-n When this option is used, as will issue a warning every time it generates a nop

instruction from a macro.
The following options are available when as is configured for an MCore processor.

-jsri2bsr

-nojsri2bsr
Enable or disable the JSRI to BSR transformation. By default this is enabled.
The command line option ‘-nojsri2bsr’ can be used to disable it.

-sifilter

-nosifilter
Enable or disable the silicon filter behaviour. By default this is disabled. The
default can be overridden by the ‘-sifilter’ command line option.

-relax Alter jump instructions for long displacements.

-mcpu=[210]340]
Select the cpu type on the target hardware. This controls which instructions
can be assembled.

-EB Assemble for a big endian target.
-EL Assemble for a little endian target.

See the info pages for documentation of the MMIX-specific options.

1.1 Structure of this Manual

This manual is intended to describe what you need to know to use GNU as. We cover the
syntax expected in source files, including notation for symbols, constants, and expressions;
the directives that as understands; and of course how to invoke as.

This manual also describes some of the machine-dependent features of various flavors of
the assembler.

On the other hand, this manual is not intended as an introduction to programming
in assembly language—Ilet alone programming in generall In a similar vein, we make no
attempt to introduce the machine architecture; we do not describe the instruction set,
standard mnemonics, registers or addressing modes that are standard to a particular archi-
tecture. You may want to consult the manufacturer’s machine architecture manual for this
information.

1.2 The GNU Assembler

GNU as is really a family of assemblers. If you use (or have used) the GNU assembler on
one architecture, you should find a fairly similar environment when you use it on another
architecture. FEach version has much in common with the others, including object file
formats, most assembler directives (often called pseudo-ops) and assembler syntax.

10 Using as

as is primarily intended to assemble the output of the GNU C compiler gcc for use by
the linker 1d. Nevertheless, we’ve tried to make as assemble correctly everything that other
assemblers for the same machine would assemble. Any exceptions are documented explicitly
(see Chapter 8 [Machine Dependencies|, page 63). This doesn’t mean as always uses the
same syntax as another assembler for the same architecture; for example, we know of several
incompatible versions of 680x0 assembly language syntax.

Unlike older assemblers, as is designed to assemble a source program in one pass of the
source file. This has a subtle impact on the . org directive (see Section 7.53 [.org|, page 50).

1.3 Object File Formats

The GNU assembler can be configured to produce several alternative object file formats.
For the most part, this does not affect how you write assembly language programs; but di-
rectives for debugging symbols are typically different in different file formats. See Section 5.5
[Symbol Attributes|, page 33.

1.4 Command Line

After the program name as, the command line may contain options and file names.
Options may appear in any order, and may be before, after, or between file names. The
order of file names is significant.

‘~=7 (two hyphens) by itself names the standard input file explicitly, as one of the files
for as to assemble.

Except for ‘-=" any command line argument that begins with a hyphen (‘-’) is an option.
Each option changes the behavior of as. No option changes the way another option works.
An option is a ‘=’ followed by one or more letters; the case of the letter is important. All
options are optional.

Some options expect exactly one file name to follow them. The file name may either
immediately follow the option’s letter (compatible with older assemblers) or it may be the
next command argument (GNU standard). These two command lines are equivalent:

as -o my-object-file.o mumble.s
as -omy-object-file.o mumble.s

1.5 Input Files

We use the phrase source program, abbreviated source, to describe the program input
to one run of as. The program may be in one or more files; how the source is partitioned
into files doesn’t change the meaning of the source.

The source program is a concatenation of the text in all the files, in the order specified.

Each time you run as it assembles exactly one source program. The source program is
made up of one or more files. (The standard input is also a file.)

You give as a command line that has zero or more input file names. The input files are
read (from left file name to right). A command line argument (in any position) that has no
special meaning is taken to be an input file name.

Chapter 1: Overview 11

If you give as no file names it attempts to read one input file from the as standard input,
which is normally your terminal. You may have to type to tell as there is no more
program to assemble.

Use ‘== if you need to explicitly name the standard input file in your command line.

If the source is empty, as produces a small, empty object file.

Filenames and Line-numbers

There are two ways of locating a line in the input file (or files) and either may be used
in reporting error messages. One way refers to a line number in a physical file; the other
refers to a line number in a “logical” file. See Section 1.7 [Error and Warning Messages],
page 11.

Physical files are those files named in the command line given to as.

Logical files are simply names declared explicitly by assembler directives; they bear no
relation to physical files. Logical file names help error messages reflect the original source
file, when as source is itself synthesized from other files. as understands the ‘#’ directives
emitted by the gcc preprocessor. See also Section 7.27 [.file], page 43.

1.6 Output (Object) File

Every time you run as it produces an output file, which is your assembly language
program translated into numbers. This file is the object file. Its default name is a.out, or
b.out when as is configured for the Intel 80960. You can give it another name by using
the ‘=0’ option. Conventionally, object file names end with ‘.o’. The default name is used
for historical reasons: older assemblers were capable of assembling self-contained programs
directly into a runnable program. (For some formats, this isn’t currently possible, but it
can be done for the a.out format.)

The object file is meant for input to the linker 1d. It contains assembled program code,
information to help 1d integrate the assembled program into a runnable file, and (optionally)
symbolic information for the debugger.

1.7 Error and Warning Messages

as may write warnings and error messages to the standard error file (usually your ter-
minal). This should not happen when a compiler runs as automatically. Warnings report
an assumption made so that as could keep assembling a flawed program; errors report a
grave problem that stops the assembly.

Warning messages have the format
file_name:NNN:Warning Message Text

(where NNN is a line number). If a logical file name has been given (see Section 7.27
[.file], page 43) it is used for the filename, otherwise the name of the current input file
is used. If a logical line number was given (see Section 7.44 [.1line|, page 48) then it is
used to calculate the number printed, otherwise the actual line in the current source file is
printed. The message text is intended to be self explanatory (in the grand Unix tradition).

Error messages have the format

12 Using as

file_name:NNN:FATAL:Error Message Text

The file name and line number are derived as for warning messages. The actual message
text may be rather less explanatory because many of them aren’t supposed to happen.

Chapter 2: Command-Line Options 13

2 Command-Line Options

This chapter describes command-line options available in all versions of the GNU as-
sembler; see Chapter 8 [Machine Dependencies], page 63, for options specific to particular
machine architectures.

If you are invoking as via the GNU C compiler (version 2), you can use the ‘~Wa’ option
to pass arguments through to the assembler. The assembler arguments must be separated
from each other (and the ‘-Wa’) by commas. For example:

gcc ¢ -g -0 -Wa,-alh,-L file.c

This passes two options to the assembler: ‘-alh’ (emit a listing to standard output with
with high-level and assembly source) and ‘-L’ (retain local symbols in the symbol table).

Usually you do not need to use this ‘-Wa’ mechanism, since many compiler command-
line options are automatically passed to the assembler by the compiler. (You can call the
GNU compiler driver with the ‘~v’ option to see precisely what options it passes to each
compilation pass, including the assembler.)

2.1 Enable Listings: ‘-a[cdhlns]’

These options enable listing output from the assembler. By itself, ‘-a’ requests high-
level, assembly, and symbols listing. You can use other letters to select specific options
for the list: ‘-ah’ requests a high-level language listing, ‘-al’ requests an output-program
assembly listing, and ‘-as’ requests a symbol table listing. High-level listings require that a
compiler debugging option like ‘~g’ be used, and that assembly listings (‘-al’) be requested
also.

Use the ‘-ac’ option to omit false conditionals from a listing. Any lines which are not
assembled because of a false .if (or .ifdef, or any other conditional), or a true . if followed
by an .else, will be omitted from the listing.

Use the ‘-ad’ option to omit debugging directives from the listing.

Once you have specified one of these options, you can further control listing output and
its appearance using the directives .list, .nolist, .psize, .eject, .title, and .sbttl.
The ‘-an’ option turns off all forms processing. If you do not request listing output with
one of the ‘-a’ options, the listing-control directives have no effect.

The letters after ‘-a’ may be combined into one option, e.g., ‘-aln’.

Note if the assembler source is coming from the standard input (eg because it is being
created by gcc and the ‘-pipe’ command line switch is being used) then the listing will not
contain any comments or preprocessor directives. This is because the listing code buffers
input source lines from stdin only after they have been preprocessed by the assembler. This
reduces memory usage and makes the code more efficient.

2.2 D’

This option has no effect whatsoever, but it is accepted to make it more likely that
scripts written for other assemblers also work with as.

14 Using as

2.3 Work Faster: ‘-f’

‘~f’ should only be used when assembling programs written by a (trusted) compiler. ‘-f’
stops the assembler from doing whitespace and comment preprocessing on the input file(s)
before assembling them. See Section 3.1 [Preprocessing], page 19.

Warning: if you use ‘-f’ when the files actually need to be preprocessed (if
they contain comments, for example), as does not work correctly.

2.4 .include search path: ‘-I’ path

Use this option to add a path to the list of directories as searches for files specified in
.include directives (see Section 7.37 [.include], page 46). You may use ‘-I’' as many
times as necessary to include a variety of paths. The current working directory is always
searched first; after that, as searches any ‘-I’ directories in the same order as they were
specified (left to right) on the command line.

2.5 Difference Tables: ‘-K’

as sometimes alters the code emitted for directives of the form ‘.word syml-sym2’; see
Section 7.92 [.word], page 61. You can use the ‘-K’ option if you want a warning issued
when this is done.

2.6 Include Local Labels: ¢-L’°

Labels beginning with ‘L’ (upper case only) are called local labels. See Section 5.3
[Symbol Names], page 31. Normally you do not see such labels when debugging, because
they are intended for the use of programs (like compilers) that compose assembler programs,
not for your notice. Normally both as and 1d discard such labels, so you do not normally
debug with them.

This option tells as to retain those ‘L. ..’ symbols in the object file. Usually if you do
this you also tell the linker 1d to preserve symbols whose names begin with ‘L’.

By default, a local label is any label beginning with ‘L’, but each target is allowed to
redefine the local label prefix. On the HPPA local labels begin with ‘L$’.

3

2.7 Configuring listing output: ‘--listing’

The listing feature of the assembler can be enabled via the command line switch ‘-a’ (see
Section 2.1 [a], page 13). This feature combines the input source file(s) with a hex dump
of the corresponding locations in the output object file, and displays them as a listing file.
The format of this listing can be controlled by pseudo ops inside the assembler source (see
Section 7.48 [List], page 49 see Section 7.83 [Title], page 59 see Section 7.64 [Sbttl], page 53
see Section 7.59 [Psize], page 52 see Section 7.14 [Eject], page 42) and also by the following
switches:

--listing-lhs-width=‘number’
Sets the maximum width, in words, of the first line of the hex byte dump. This
dump appears on the left hand side of the listing output.

Chapter 2: Command-Line Options 15

--listing-lhs-width2=‘number’
Sets the maximum width, in words, of any further lines of the hex byte dump
for a given inut source line. If this value is not specified, it defaults to being
the same as the value specified for ‘--1listing-lhs-width’. If neither switch
is used the default is to one.

--listing-rhs-width=‘number’
Sets the maximum width, in characters, of the source line that is displayed
alongside the hex dump. The default value for this parameter is 100. The
source line is displayed on the right hand side of the listing output.

--listing-cont-lines=‘number’
Sets the maximum number of continuation lines of hex dump that will be dis-
played for a given single line of source input. The default value is 4.

2.8 Assemble in MRI Compatibility Mode: ‘-M’

The ‘-M’ or ‘--mri’ option selects MRI compatibility mode. This changes the syntax and
pseudo-op handling of as to make it compatible with the ASM68K or the ASM960 (depending
upon the configured target) assembler from Microtec Research. The exact nature of the
MRI syntax will not be documented here; see the MRI manuals for more information. Note
in particular that the handling of macros and macro arguments is somewhat different. The
purpose of this option is to permit assembling existing MRI assembler code using as.

The MRI compatibility is not complete. Certain operations of the MRI assembler de-
pend upon its object file format, and can not be supported using other object file formats.
Supporting these would require enhancing each object file format individually. These are:

e global symbols in common section
The m68k MRI assembler supports common sections which are merged by the linker.
Other object file formats do not support this. as handles common sections by treating
them as a single common symbol. It permits local symbols to be defined within a
common section, but it can not support global symbols, since it has no way to describe
them.

e complex relocations
The MRI assemblers support relocations against a negated section address, and reloca-
tions which combine the start addresses of two or more sections. These are not support
by other object file formats.

e END pseudo-op specifying start address
The MRI END pseudo-op permits the specification of a start address. This is not
supported by other object file formats. The start address may instead be specified
using the ‘-e’ option to the linker, or in a linker script.

e IDNT, .ident and NAME pseudo-ops

The MRI IDNT, .ident and NAME pseudo-ops assign a module name to the output file.
This is not supported by other object file formats.

e 0ORG pseudo-op

The m68k MRI ORG pseudo-op begins an absolute section at a given address. This
differs from the usual as . org pseudo-op, which changes the location within the current

16

Using as

section. Absolute sections are not supported by other object file formats. The address
of a section may be assigned within a linker script.

There are some other features of the MRI assembler which are not supported by as,

typically either because they are difficult or because they seem of little consequence. Some
of these may be supported in future releases.

EBCDIC strings
EBCDIC strings are not supported.
packed binary coded decimal

Packed binary coded decimal is not supported. This means that the DC.P and DCB.P
pseudo-ops are not supported.

FEQU pseudo-op

The m68k FEQU pseudo-op is not supported.
NOOBJ pseudo-op

The m68k NOOBJ pseudo-op is not supported.
OPT branch control options

The m68k OPT branch control options—B, BRS, BRB, BRL, and BRW—are ignored. as
automatically relaxes all branches, whether forward or backward, to an appropriate
size, so these options serve no purpose.

OPT list control options

The following m68k OPT list control options are ignored: C, CEX, CL, CRE, E, G, I, M,
MEX, MC, MD, X.

other OPT options

The following m68k OPT options are ignored: NEST, 0, OLD, OP, P, PCO, PCR, PCS, R.
OPT D option is default

The m68k OPT D option is the default, unlike the MRI assembler. OPT NOD may be used
to turn it off.

XREF pseudo-op.

The m68k XREF pseudo-op is ignored.

.debug pseudo-op

The 1960 .debug pseudo-op is not supported.
.extended pseudo-op

The 1960 .extended pseudo-op is not supported.
.1list pseudo-op.

The various options of the i960 .1ist pseudo-op are not supported.
.optimize pseudo-op

The 1960 .optimize pseudo-op is not supported.
.output pseudo-op

The 1960 .output pseudo-op is not supported.
.setreal pseudo-op

The 1960 .setreal pseudo-op is not supported.

Chapter 2: Command-Line Options 17

2.9 Dependency tracking: ‘--MD’

as can generate a dependency file for the file it creates. This file consists of a single rule
suitable for make describing the dependencies of the main source file.

The rule is written to the file named in its argument.
This feature is used in the automatic updating of makefiles.

2.10 Name the Object File: ‘-0’

There is always one object file output when you run as. By default it has the name
‘a.out’ (or ‘b.out’, for Intel 960 targets only). You use this option (which takes exactly
one filename) to give the object file a different name.

Whatever the object file is called, as overwrites any existing file of the same name.

2.11 Join Data and Text Sections: ‘-R’

‘-R’ tells as to write the object file as if all data-section data lives in the text section. This
is only done at the very last moment: your binary data are the same, but data section parts
are relocated differently. The data section part of your object file is zero bytes long because
all its bytes are appended to the text section. (See Chapter 4 [Sections and Relocation],
page 25.)

When you specify ‘-R’ it would be possible to generate shorter address displacements
(because we do not have to cross between text and data section). We refrain from doing
this simply for compatibility with older versions of as. In future, ‘-R’ may work this way.

When as is configured for COFF output, this option is only useful if you use sections
named ‘.text’ and ‘.data’.

‘-R’ is not supported for any of the HPPA targets. Using ‘-R’ generates a warning from
as.

2.12 Display Assembly Statistics: ‘--statistics’

Use ‘--statistics’ to display two statistics about the resources used by as: the max-
imum amount of space allocated during the assembly (in bytes), and the total execution
time taken for the assembly (in CPU seconds).

¢

2.13 Compatible output: ‘--traditional-format’

For some targets, the output of as is different in some ways from the output of some
existing assembler. This switch requests as to use the traditional format instead.

For example, it disables the exception frame optimizations which as normally does by
default on gcc output.
‘<

2.14 Announce Version: ‘-v

You can find out what version of as is running by including the option ‘-v’ (which you
can also spell as ‘-version’) on the command line.

18 Using as

¢

2.15 Control Warnings: ‘-W’, ‘--warn’, ‘--no-warn’,

‘--fatal-warnings’

as should never give a warning or error message when assembling compiler output. But
programs written by people often cause as to give a warning that a particular assumption
was made. All such warnings are directed to the standard error file.

If you use the ‘W’ and ‘--no-warn’ options, no warnings are issued. This only affects the
warning messages: it does not change any particular of how as assembles your file. Errors,
which stop the assembly, are still reported.

If you use the ‘~-fatal-warnings’ option, as considers files that generate warnings to
be in error.

You can switch these options off again by specifying ‘~-warn’, which causes warnings to
be output as usual.

2.16 Generate Object File in Spite of Errors: ‘-7’

After an error message, as normally produces no output. If for some reason you are
interested in object file output even after as gives an error message on your program,
use the ‘~Z’ option. If there are any errors, as continues anyways, and writes an object
file after a final warning message of the form ‘n errors, m warnings, generating bad
object file.’

Chapter 3: Syntax 19

3 Syntax

This chapter describes the machine-independent syntax allowed in a source file. as
syntax is similar to what many other assemblers use; it is inspired by the BSD 4.2 assembler,
except that as does not assemble Vax bit-fields.

3.1 Preprocessing
The as internal preprocessor:

e adjusts and removes extra whitespace. It leaves one space or tab before the keywords
on a line, and turns any other whitespace on the line into a single space.

e removes all comments, replacing them with a single space, or an appropriate number
of newlines.

e converts character constants into the appropriate numeric values.

It does not do macro processing, include file handling, or anything else you may get
from your C compiler’s preprocessor. You can do include file processing with the .include
directive (see Section 7.37 [.include], page 46). You can use the GNU C compiler driver
to get other “CPP” style preprocessing, by giving the input file a ‘.S’ suffix. See section
“Options Controlling the Kind of Output” in Using GNU CC.

Excess whitespace, comments, and character constants cannot be used in the portions
of the input text that are not preprocessed.

If the first line of an input file is #NO_APP or if you use the ‘-f’ option, whitespace
and comments are not removed from the input file. Within an input file, you can ask for
whitespace and comment removal in specific portions of the by putting a line that says
#APP before the text that may contain whitespace or comments, and putting a line that
says #NO_APP after this text. This feature is mainly intend to support asm statements in
compilers whose output is otherwise free of comments and whitespace.

3.2 Whitespace

Whitespace is one or more blanks or tabs, in any order. Whitespace is used to separate
symbols, and to make programs neater for people to read. Unless within character constants
(see Section 3.6.1 [Character Constants|, page 21), any whitespace means the same as
exactly one space.

3.3 Comments

There are two ways of rendering comments to as. In both cases the comment is equivalent
to one space.
Anything from ‘/*’ through the next ‘*/’ is a comment. This means you may not nest
these comments.
/*
The only way to include a newline (’\n’) in a comment
is to use this sort of comment.

20 Using as

*/

/* This sort of comment does not nest. */

Anything from the line comment character to the next newline is considered a comment
and is ignored. The line comment character is ‘;’ for the AMD 29K family; ‘;’ on the ARC;
‘@ on the ARM; *;’ for the H8/300 family; ‘!’ for the H8/500 family; *;’ for the HPPA; ‘#’
on the i386 and x86-64; ‘#’ on the 1960; *;’ for the PDP-11; *;’ for picoJava; ‘;’ for Motorola
PowerPC; ‘1’ for the Hitachi SH; ‘!’ on the SPARC; ‘#” on the m32r; ‘|’ on the 680x0; ‘#’
on the 68HC11 and 68HC12; ¢;’ on the M880x0; ‘#’ on the Vax; ‘!’ for the Z8000; ‘#’ on
the V850; see Chapter 8 [Machine Dependencies], page 63.

On some machines there are two different line comment characters. One character only
begins a comment if it is the first non-whitespace character on a line, while the other always
begins a comment.

The V850 assembler also supports a double dash as starting a comment that extends to
the end of the line.

To be compatible with past assemblers, lines that begin with ‘#’ have a special inter-
pretation. Following the ‘#’ should be an absolute expression (see Chapter 6 [Expressions],
page 35): the logical line number of the nezt line. Then a string (see Section 3.6.1.1 [Strings],
page 21) is allowed: if present it is a new logical file name. The rest of the line, if any,
should be whitespace.

If the first non-whitespace characters on the line are not numeric, the line is ignored.
(Just like a comment.)
This is an ordinary comment.

42-6 "new_file_name" # New logical file name
This is logical line # 36.

This feature is deprecated, and may disappear from future versions of as.

3.4 Symbols

A symbol is one or more characters chosen from the set of all letters (both upper and
lower case), digits and the three characters ‘_.$’. On most machines, you can also use $
in symbol names; exceptions are noted in Chapter 8 [Machine Dependencies|, page 63. No
symbol may begin with a digit. Case is significant. There is no length limit: all characters
are significant. Symbols are delimited by characters not in that set, or by the beginning of
a file (since the source program must end with a newline, the end of a file is not a possible
symbol delimiter). See Chapter 5 [Symbols|, page 31.

3.5 Statements

A statement ends at a newline character (‘\n’) or line separator character. (The line
separator is usually ‘;’, unless this conflicts with the comment character; see Chapter 8
[Machine Dependencies|, page 63.) The newline or separator character is considered part
of the preceding statement. Newlines and separators within character constants are an

exception: they do not end statements.

Chapter 3: Syntax 21

It is an error to end any statement with end-of-file: the last character of any input file
should be a newline.

An empty statement is allowed, and may include whitespace. It is ignored.

A statement begins with zero or more labels, optionally followed by a key symbol which
determines what kind of statement it is. The key symbol determines the syntax of the rest
of the statement. If the symbol begins with a dot ‘.’ then the statement is an assembler
directive: typically valid for any computer. If the symbol begins with a letter the statement
is an assembly language instruction: it assembles into a machine language instruction.
Different versions of as for different computers recognize different instructions. In fact,
the same symbol may represent a different instruction in a different computer’s assembly
language.

A label is a symbol immediately followed by a colon (:). Whitespace before a label or
after a colon is permitted, but you may not have whitespace between a label’s symbol and
its colon. See Section 5.1 [Labels], page 31.

For HPPA targets, labels need not be immediately followed by a colon, but the definition
of a label must begin in column zero. This also implies that only one label may be defined
on each line.

label: .directive followed by something

another_label: # This is an empty statement.
instruction operand_1, operand_2,

3.6 Constants

A constant is a number, written so that its value is known by inspection, without knowing
any context. Like this:
.byte 74, 0112, 092, 0x4A, 0X4a, ’J, ’\J # All the same value.
.ascii "Ring the bell\7" # A string constant.
.octa 0x123456789abcdef0123456789ABCDEFO # A bignum.
.float 0f-314159265358979323846264338327\
95028841971.693993751E-40 # - pi, a flonum.

3.6.1 Character Constants

There are two kinds of character constants. A character stands for one character in one
byte and its value may be used in numeric expressions. String constants (properly called
string literals) are potentially many bytes and their values may not be used in arithmetic
expressions.

3.6.1.1 Strings

A string is written between double-quotes. It may contain double-quotes or null charac-
ters. The way to get special characters into a string is to escape these characters: precede
them with a backslash ‘\’ character. For example ‘\\’ represents one backslash: the first \
is an escape which tells as to interpret the second character literally as a backslash (which
prevents as from recognizing the second \ as an escape character). The complete list of
escapes follows.

22 Using as

\b Mnemonic for backspace; for ASCII this is octal code 010.

\f Mnemonic for FormFeed; for ASCII this is octal code 014.

\n Mnemonic for newline; for ASCII this is octal code 012.

\r Mnemonic for carriage-Return; for ASCII this is octal code 015.
\t Mnemonic for horizontal Tab; for ASCII this is octal code 011.

\ digit digit digit
An octal character code. The numeric code is 3 octal digits. For compatibility
with other Unix systems, 8 and 9 are accepted as digits: for example, \008 has
the value 010, and \009 the value 011.

\x hex-digits...
A hex character code. All trailing hex digits are combined. Either upper or
lower case x works.

\\ Represents one ‘\’ character.

‘(n?

\" Represents one character. Needed in strings to represent this character,
because an unescaped ‘"’ would end the string.

\ anything-else
Any other character when escaped by \ gives a warning, but assembles as if the
‘\” was not present. The idea is that if you used an escape sequence you clearly
didn’t want the literal interpretation of the following character. However as
has no other interpretation, so as knows it is giving you the wrong code and
warns you of the fact.

Which characters are escapable, and what those escapes represent, varies widely among
assemblers. The current set is what we think the BSD 4.2 assembler recognizes, and is
a subset of what most C compilers recognize. If you are in doubt, do not use an escape
sequence.

3.6.1.2 Characters

A single character may be written as a single quote immediately followed by that char-
acter. The same escapes apply to characters as to strings. So if you want to write the
character backslash, you must write ’\\ where the first \ escapes the second \. As you can
see, the quote is an acute accent, not a grave accent. A newline immediately following an
acute accent is taken as a literal character and does not count as the end of a statement.
The value of a character constant in a numeric expression is the machine’s byte-wide code
for that character. as assumes your character code is ASCII: ’A means 65, ’B means 66,
and so on.

3.6.2 Number Constants

as distinguishes three kinds of numbers according to how they are stored in the target
machine. Integers are numbers that would fit into an int in the C language. Bignums are
integers, but they are stored in more than 32 bits. Flonums are floating point numbers,
described below.

Chapter 3: Syntax 23

3.6.2.1 Integers

A binary integer is ‘Ob’ or ‘0B’ followed by zero or more of the binary digits ‘01’.
An octal integer is ‘0’ followed by zero or more of the octal digits (‘01234567’).

A decimal integer starts with a non-zero digit followed by zero or more digits
(‘0123456789").

A hexadecimal integer is ‘0x’ or ‘0X’ followed by one or more hexadecimal digits chosen
from ‘0123456789abcdef ABCDEF’.

Integers have the usual values. To denote a negative integer, use the prefix operator ‘-’
discussed under expressions (see Section 6.2.3 [Prefix Operators]|, page 36).

3.6.2.2 Bignums

A bignum has the same syntax and semantics as an integer except that the number (or
its negative) takes more than 32 bits to represent in binary. The distinction is made because
in some places integers are permitted while bignums are not.

3.6.2.3 Flonums

A flonum represents a floating point number. The translation is indirect: a decimal
floating point number from the text is converted by as to a generic binary floating point
number of more than sufficient precision. This generic floating point number is converted
to a particular computer’s floating point format (or formats) by a portion of as specialized
to that computer.

A flonum is written by writing (in order)
e The digit ‘0’. (‘0’ is optional on the HPPA.)
e A letter, to tell as the rest of the number is a flonum. e is recommended. Case is not
important.

On the H8/300, H8/500, Hitachi SH, and AMD 29K architectures, the letter must be
one of the letters ‘DFPRSX’ (in upper or lower case).

On the ARC, the letter must be one of the letters ‘DFRS’ (in upper or lower case).

On the Intel 960 architecture, the letter must be one of the letters ‘DFT’ (in upper or
lower case).

On the HPPA architecture, the letter must be ‘E’ (upper case only).

An optional sign: either ‘+’ or ‘-’

An optional integer part: zero or more decimal digits.

An optional fractional part: ‘.’ followed by zero or more decimal digits.

An optional exponent, consisting of:
e An ‘E’or ‘e’.
e Optional sign: either ‘+’ or ‘-’.
e One or more decimal digits.

At least one of the integer part or the fractional part must be present. The floating point
number has the usual base-10 value.

24 Using as

as does all processing using integers. Flonums are computed independently of any
floating point hardware in the computer running as.

Chapter 4: Sections and Relocation 25

4 Sections and Relocation

4.1 Background

Roughly, a section is a range of addresses, with no gaps; all data “in” those addresses
is treated the same for some particular purpose. For example there may be a “read only”
section.

The linker 1d reads many object files (partial programs) and combines their contents to
form a runnable program. When as emits an object file, the partial program is assumed to
start at address 0. 1d assigns the final addresses for the partial program, so that different
partial programs do not overlap. This is actually an oversimplification, but it suffices to
explain how as uses sections.

1d moves blocks of bytes of your program to their run-time addresses. These blocks
slide to their run-time addresses as rigid units; their length does not change and neither
does the order of bytes within them. Such a rigid unit is called a section. Assigning run-
time addresses to sections is called relocation. It includes the task of adjusting mentions
of object-file addresses so they refer to the proper run-time addresses. For the H8 /300 and
H8/500, and for the Hitachi SH, as pads sections if needed to ensure they end on a word
(sixteen bit) boundary.

An object file written by as has at least three sections, any of which may be empty.
These are named text, data and bss sections.

When it generates COFF output, as can also generate whatever other named sections
you specify using the ‘. section’ directive (see Section 7.66 [.section], page 54). If you do
not use any directives that place output in the ‘.text’ or ‘.data’ sections, these sections
still exist, but are empty.

When as generates SOM or ELF output for the HPPA, as can also generate what-
ever other named sections you specify using the ‘.space’ and ‘.subspace’ directives. See
HP9000 Series 800 Assembly Language Reference Manual (HP 92432-90001) for details on
the ‘.space’ and ‘.subspace’ assembler directives.

Additionally, as uses different names for the standard text, data, and bss sections
when generating SOM output. Program text is placed into the ‘$CODE$’ section, data
into ‘$DATA$’, and BSS into ‘BSS’.

Within the object file, the text section starts at address 0, the data section follows, and
the bss section follows the data section.

When generating either SOM or ELF output files on the HPPA| the text section starts
at address 0, the data section at address 0x4000000, and the bss section follows the data
section.

To let 1d know which data changes when the sections are relocated, and how to change
that data, as also writes to the object file details of the relocation needed. To perform
relocation 1d must know, each time an address in the object file is mentioned:

e Where in the object file is the beginning of this reference to an address?
e How long (in bytes) is this reference?

e Which section does the address refer to? What is the numeric value of

26 Using as

(address) — (start-address of section)?
e Is the reference to an address “Program-Counter relative”?

In fact, every address as ever uses is expressed as
(section) + (offset into section)

Further, most expressions as computes have this section-relative nature. (For some object
formats, such as SOM for the HPPA, some expressions are symbol-relative instead.)

In this manual we use the notation {secname N} to mean “offset N into section secname.”

Apart from text, data and bss sections you need to know about the absolute section.
When 1d mixes partial programs, addresses in the absolute section remain unchanged. For
example, address {absolute 0} is “relocated” to run-time address 0 by 1d. Although the
linker never arranges two partial programs’ data sections with overlapping addresses after
linking, by definition their absolute sections must overlap. Address {absolute 239} in
one part of a program is always the same address when the program is running as address
{absolute 239} in any other part of the program.

The idea of sections is extended to the undefined section. Any address whose section is
unknown at assembly time is by definition rendered {undefined U}—where U is filled in
later. Since numbers are always defined, the only way to generate an undefined address is
to mention an undefined symbol. A reference to a named common block would be such a
symbol: its value is unknown at assembly time so it has section undefined.

By analogy the word section is used to describe groups of sections in the linked program.
1d puts all partial programs’ text sections in contiguous addresses in the linked program.
It is customary to refer to the text section of a program, meaning all the addresses of all
partial programs’ text sections. Likewise for data and bss sections.

Some sections are manipulated by 1d; others are invented for use of as and have no
meaning except during assembly.

4.2 Linker Sections
1d deals with just four kinds of sections, summarized below.

named sections

text section

data section
These sections hold your program. as and 1d treat them as separate but equal
sections. Anything you can say of one section is true another. When the pro-
gram is running, however, it is customary for the text section to be unalterable.
The text section is often shared among processes: it contains instructions, con-
stants and the like. The data section of a running program is usually alterable:
for example, C variables would be stored in the data section.

bss section
This section contains zeroed bytes when your program begins running. It is
used to hold uninitialized variables or common storage. The length of each
partial program’s bss section is important, but because it starts out containing
zeroed bytes there is no need to store explicit zero bytes in the object file. The
bss section was invented to eliminate those explicit zeros from object files.

Chapter 4: Sections and Relocation 27

absolute section
Address 0 of this section is always “relocated” to runtime address 0. This
is useful if you want to refer to an address that 1d must not change when
relocating. In this sense we speak of absolute addresses being “unrelocatable”:
they do not change during relocation.

undefined section
This “section” is a catch-all for address references to objects not in the preceding
sections.

An idealized example of three relocatable sections follows. The example uses the tradi-
tional section names ‘.text’ and ‘.data’. Memory addresses are on the horizontal axis.
Partial program #1:
text data bss
| ettt | aaaa [o0 |

Partial program #2:
text data bss
't | poop | 000 |

linked program.:

text data bss
| |rrr | ettt | | ddaa [poop | ooo0o
addresses:

0...

4.3 Assembler Internal Sections

These sections are meant only for the internal use of as. They have no meaning at
run-time. You do not really need to know about these sections for most purposes; but they
can be mentioned in as warning messages, so it might be helpful to have an idea of their
meanings to as. These sections are used to permit the value of every expression in your
assembly language program to be a section-relative address.

ASSEMBLER-INTERNAL-LOGIC-ERROR!
An internal assembler logic error has been found. This means there is a bug in
the assembler.

expr section
The assembler stores complex expression internally as combinations of symbols.
When it needs to represent an expression as a symbol, it puts it in the expr
section.

4.4 Sub-Sections

Assembled bytes conventionally fall into two sections: text and data. You may have
separate groups of data in named sections that you want to end up near to each other in
the object file, even though they are not contiguous in the assembler source. as allows you
to use subsections for this purpose. Within each section, there can be numbered subsections

28 Using as

with values from 0 to 8192. Objects assembled into the same subsection go into the object
file together with other objects in the same subsection. For example, a compiler might want
to store constants in the text section, but might not want to have them interspersed with
the program being assembled. In this case, the compiler could issue a ‘.text 0’ before each
section of code being output, and a ‘.text 1’ before each group of constants being output.

Subsections are optional. If you do not use subsections, everything goes in subsection
number zero.

Each subsection is zero-padded up to a multiple of four bytes. (Subsections may be
padded a different amount on different flavors of as.)

Subsections appear in your object file in numeric order, lowest numbered to highest.
(All this to be compatible with other people’s assemblers.) The object file contains no
representation of subsections; 1d and other programs that manipulate object files see no
trace of them. They just see all your text subsections as a text section, and all your data
subsections as a data section.

To specify which subsection you want subsequent statements assembled into, use a nu-
meric argument to specify it, in a ‘.text expression’ or a ‘.data expression’ statement.
When generating COFF output, you can also use an extra subsection argument with ar-
bitrary named sections: ‘.section name, expression’. Expression should be an absolute
expression. (See Chapter 6 [Expressions|, page 35.) If you just say ‘.text’ then ‘.text 0’
is assumed. Likewise ‘.data’ means ‘.data 0’. Assembly begins in text 0. For instance:

.text O # The default subsection is text O anyway.
.ascii "This lives in the first text subsection. *"
.text 1

.ascii "But this lives in the second text subsection."
.data O

.ascii "This lives in the data section,"

.ascii "in the first data subsection."

.text O

.ascii "This lives in the first text section,"

.ascii "immediately following the asterisk (*)."

Each section has a location counter incremented by one for every byte assembled into
that section. Because subsections are merely a convenience restricted to as there is no
concept of a subsection location counter. There is no way to directly manipulate a location
counter—but the .align directive changes it, and any label definition captures its current
value. The location counter of the section where statements are being assembled is said to
be the active location counter.

4.5 bss Section

The bss section is used for local common variable storage. You may allocate address
space in the bss section, but you may not dictate data to load into it before your program
executes. When your program starts running, all the contents of the bss section are zeroed
bytes.

The .1lcomm pseudo-op defines a symbol in the bss section; see Section 7.42 [.1lcomm|,
page 47.

Chapter 4: Sections and Relocation 29

The .comm pseudo-op may be used to declare a common symbol, which is another form
of uninitialized symbol; see See Section 7.8 [.comm], page 41.

When assembling for a target which supports multiple sections, such as ELF or COFF,
you may switch into the .bss section and define symbols as usual; see Section 7.66
[.section|, page 54. You may only assemble zero values into the section. Typically the
section will only contain symbol definitions and .skip directives (see Section 7.74 [.skip],
page 56).

30

Using as

Chapter 5: Symbols 31

5 Symbols

Symbols are a central concept: the programmer uses symbols to name things, the linker
uses symbols to link, and the debugger uses symbols to debug.

Warning: as does not place symbols in the object file in the same order they
were declared. This may break some debuggers.

5.1 Labels

A label is written as a symbol immediately followed by a colon ‘:’. The symbol then
represents the current value of the active location counter, and is, for example, a suitable
instruction operand. You are warned if you use the same symbol to represent two different
locations: the first definition overrides any other definitions.

On the HPPA, the usual form for a label need not be immediately followed by a colon,
but instead must start in column zero. Only one label may be defined on a single line.
To work around this, the HPPA version of as also provides a special directive .label for
defining labels more flexibly.

5.2 Giving Symbols Other Values

A symbol can be given an arbitrary value by writing a symbol, followed by an equals
sign ‘=", followed by an expression (see Chapter 6 [Expressions], page 35). This is equivalent
to using the .set directive. See Section 7.68 [.set], page 55.

5.3 Symbol Names

Symbol names begin with a letter or with one of ‘. _’. On most machines, you can also
use $ in symbol names; exceptions are noted in Chapter 8 [Machine Dependencies], page 63.
That character may be followed by any string of digits, letters, dollar signs (unless otherwise
noted in Chapter 8 [Machine Dependencies|, page 63), and underscores. For the AMD 29K
family, ‘?’ is also allowed in the body of a symbol name, though not at its beginning.

Case of letters is significant: foo is a different symbol name than Foo.

Each symbol has exactly one name. Each name in an assembly language program refers
to exactly one symbol. You may use that symbol name any number of times in a program.

Local Symbol Names

Local symbols help compilers and programmers use names temporarily. They create
symbols which are guaranteed to be unique over the entire scope of the input source code
and which can be referred to by a simple notation. To define a local symbol, write a label of
the form ‘N:’ (where N represents any positive integer). To refer to the most recent previous
definition of that symbol write ‘Nb’, using the same number as when you defined the label.
To refer to the next definition of a local label, write ‘Nf’— The ‘b’ stands for “backwards”
and the ‘f’ stands for “forwards”.

There is no restriction on how you can use these labels, and you can reuse them too. So
that it is possible to repeatedly define the same local label (using the same number ‘N’),

32 Using as

although you can only refer to the most recently defined local label of that number (for a
backwards reference) or the next definition of a specific local label for a forward reference.
It is also worth noting that the first 10 local labels (‘0:’. . .“9:”) are implemented in a slightly
more efficient manner than the others.

Here is an example:

1: branch 1f
2: branch 1b
1: branch 2f
2: branch 1b

Which is the equivalent of:
label_1: branch label_3
label_2: branch label_1
label_3: branch label_4
label_4: branch label_3
Local symbol names are only a notational device. They are immediately transformed
into more conventional symbol names before the assembler uses them. The symbol names
stored in the symbol table, appearing in error messages and optionally emitted to the object
file. The names are constructed using these parts:

L All local labels begin with ‘L’. Normally both as and 1d forget symbols that
start with ‘L’. These labels are used for symbols you are never intended to see.
If you use the ‘-L’ option then as retains these symbols in the object file. If
you also instruct 1d to retain these symbols, you may use them in debugging.

number This is the number that was used in the local label definition. So if the label is
written ‘65:’ then the number is ‘55’.

C-B This unusual character is included so you do not accidentally invent a symbol
of the same name. The character has ASCII value of ‘\002’ (control-B).

ordinal number
This is a serial number to keep the labels distinct. The first definition of ‘0:’
gets the number ‘1’. The 15th definition of ‘0:’ gets the number ‘15’, and so on.
Likewise the first definition of ‘1:’ gets the number ‘1’ and its 15th defintion
gets ‘15’ as well.

So for example, the first 1: is named L1C-B1, the 44th 3: is named L3C-B44.

Dollar Local Labels

as also supports an even more local form of local labels called dollar labels. These labels
go out of scope (ie they become undefined) as soon as a non-local label is defined. Thus
they remain valid for only a small region of the input source code. Normal local labels, by
contrast, remain in scope for the entire file, or until they are redefined by another occurrence
of the same local label.

Dollar labels are defined in exactly the same way as ordinary local labels, except that
instead of being terminated by a colon, they are terminated by a dollar sign. eg ‘55$’.

They can also be distinguished from ordinary local labels by their transformed name
which uses ASCII character ‘\001’ (control-A) as the magic character to distinguish them
from ordinary labels. Thus the 5th defintion of ‘6$’ is named ‘L6C-A5’.

Chapter 5: Symbols 33

5.4 The Special Dot Symbol

The special symbol ‘.’ refers to the current address that as is assembling into. Thus,
the expression ‘melvin: .long .’ defines melvin to contain its own address. Assigning a
value to . is treated the same as a .org directive. Thus, the expression ‘.=.+4’ is the same
as saying ‘.space 4’.

5.5 Symbol Attributes

Every symbol has, as well as its name, the attributes “Value” and “Type”. Depending
on output format, symbols can also have auxiliary attributes.

If you use a symbol without defining it, as assumes zero for all these attributes, and
probably won’t warn you. This makes the symbol an externally defined symbol, which is
generally what you would want.

5.5.1 Value

The value of a symbol is (usually) 32 bits. For a symbol which labels a location in the
text, data, bss or absolute sections the value is the number of addresses from the start of
that section to the label. Naturally for text, data and bss sections the value of a symbol
changes as 1d changes section base addresses during linking. Absolute symbols’ values do
not change during linking: that is why they are called absolute.

The value of an undefined symbol is treated in a special way. If it is O then the symbol
is not defined in this assembler source file, and 1d tries to determine its value from other
files linked into the same program. You make this kind of symbol simply by mentioning a
symbol name without defining it. A non-zero value represents a .comm common declaration.
The value is how much common storage to reserve, in bytes (addresses). The symbol refers
to the first address of the allocated storage.

5.5.2 Type

The type attribute of a symbol contains relocation (section) information, any flag settings
indicating that a symbol is external, and (optionally), other information for linkers and
debuggers. The exact format depends on the object-code output format in use.

5.5.3 Symbol Attributes: a.out

5.5.3.1 Descriptor

This is an arbitrary 16-bit value. You may establish a symbol’s descriptor value by using
a .desc statement (see Section 7.11 [.desc]|, page 41). A descriptor value means nothing
to as.

5.5.3.2 Other

This is an arbitrary 8-bit value. It means nothing to as.

34 Using as

5.5.4 Symbol Attributes for COFF

The COFF format supports a multitude of auxiliary symbol attributes; like the primary
symbol attributes, they are set between .def and .endef directives.

5.5.4.1 Primary Attributes

The symbol name is set with .def; the value and type, respectively, with .val and
.type.

5.5.4.2 Auxiliary Attributes

The as directives .dim, .line, .scl, .size, and .tag can generate auxiliary symbol
table information for COFF.

5.5.5 Symbol Attributes for SOM

The SOM format for the HPPA supports a multitude of symbol attributes set with the
.EXPORT and .IMPORT directives.

The attributes are described in HP9000 Series 800 Assembly Language Reference Manual
(HP 92432-90001) under the IMPORT and EXPORT assembler directive documentation.

Chapter 6: Expressions 35

6 Expressions

An expression specifies an address or numeric value. Whitespace may precede and/or
follow an expression.

The result of an expression must be an absolute number, or else an offset into a particular
section. If an expression is not absolute, and there is not enough information when as sees
the expression to know its section, a second pass over the source program might be necessary
to interpret the expression—but the second pass is currently not implemented. as aborts
with an error message in this situation.

6.1 Empty Expressions

An empty expression has no value: it is just whitespace or null. Wherever an absolute
expression is required, you may omit the expression, and as assumes a value of (absolute)
0. This is compatible with other assemblers.

6.2 Integer Expressions

An integer expression is one or more arguments delimited by operators.

6.2.1 Arguments

Arguments are symbols, numbers or subexpressions. In other contexts arguments are
sometimes called “arithmetic operands”. In this manual, to avoid confusing them with the
“instruction operands” of the machine language, we use the term “argument” to refer to
parts of expressions only, reserving the word “operand” to refer only to machine instruction
operands.

Symbols are evaluated to yield {section NNN} where section is one of text, data, bss,
absolute, or undefined. NNN is a signed, 2’s complement 32 bit integer.

Numbers are usually integers.

A number can be a flonum or bignum. In this case, you are warned that only the low
order 32 bits are used, and as pretends these 32 bits are an integer. You may write integer-
manipulating instructions that act on exotic constants, compatible with other assemblers.

Subexpressions are a left parenthesis ‘ (’ followed by an integer expression, followed by a
right parenthesis ‘)’; or a prefix operator followed by an argument.

6.2.2 Operators

Operators are arithmetic functions, like + or %. Prefix operators are followed by an
argument. Infix operators appear between their arguments. Operators may be preceded
and/or followed by whitespace.

36 Using as

6.2.3 Prefix Operator

as has the following prefix operators. They each take one argument, which must be
absolute.
- Negation. Two’s complement negation.

Complementation. Bitwise not.

6.2.4 Infix Operators

Infix operators take two arguments, one on either side. Operators have precedence, but
operations with equal precedence are performed left to right. Apart from + or ‘=’, both
arguments must be absolute, and the result is absolute.

1. Highest Precedence

* Multiplication.

/ Division. Truncation is the same as the C operator ‘/’
/A Remainder.

<

<< Shift Left. Same as the C operator ‘<<’.

>

>> Shift Right. Same as the C operator ‘>>’.

2. Intermediate precedence
|
Bitwise Inclusive Or.

& Bitwise And.

~

Bitwise Exclusive Or.

! Bitwise Or Not.

3. Low Precedence

+ Addition. If either argument is absolute, the result has the section of
the other argument. You may not add together arguments from different
sections.

- Subtraction. If the right argument is absolute, the result has the section
of the left argument. If both arguments are in the same section, the result
is absolute. You may not subtract arguments from different sections.

== Is Equal To
<> Is Not Equal To

Is Less Than

Is Greater Than

>= Is Greater Than Or Equal To
<= Is Less Than Or Equal To

Chapter 6: Expressions 37

The comparison operators can be used as infix operators. A true results has
a value of -1 whereas a false result has a value of 0. Note, these operators
perform signed comparisons.

4. Lowest Precedence
&& Logical And.

I Logical Or.
These two logical operations can be used to combine the results of sub
expressions. Note, unlike the comparison operators a true result returns a
value of 1 but a false results does still return 0. Also note that the logical
or operator has a slightly lower precedence than logical and.

In short, it’s only meaningful to add or subtract the offsets in an address; you can only
have a defined section in one of the two arguments.

38

Using as

Chapter 7: Assembler Directives 39

7 Assembler Directives

All assembler directives have names that begin with a period (‘.”). The rest of the name
is letters, usually in lower case.

This chapter discusses directives that are available regardless of the target machine
configuration for the GNU assembler. Some machine configurations provide additional di-
rectives. See Chapter 8 [Machine Dependencies|, page 63.

7.1 .abort

This directive stops the assembly immediately. It is for compatibility with other assem-
blers. The original idea was that the assembly language source would be piped into the
assembler. If the sender of the source quit, it could use this directive tells as to quit also.
One day .abort will not be supported.

7.2 .ABORT

When producing COFF output, as accepts this directive as a synonym for ‘.abort’.

When producing b.out output, as accepts this directive, but ignores it.

7.3 .align abs-expr, abs-expr, abs-expr

Pad the location counter (in the current subsection) to a particular storage boundary.
The first expression (which must be absolute) is the alignment required, as described below.

The second expression (also absolute) gives the fill value to be stored in the padding
bytes. It (and the comma) may be omitted. If it is omitted, the padding bytes are normally
zero. However, on some systems, if the section is marked as containing code and the fill
value is omitted, the space is filled with no-op instructions.

The third expression is also absolute, and is also optional. If it is present, it is the
maximum number of bytes that should be skipped by this alignment directive. If doing
the alignment would require skipping more bytes than the specified maximum, then the
alignment is not done at all. You can omit the fill value (the second argument) entirely by
simply using two commas after the required alignment; this can be useful if you want the
alignment to be filled with no-op instructions when appropriate.

The way the required alignment is specified varies from system to system. For the
a29k, hppa, m68k, m88k, w65, sparc, and Hitachi SH, and 1386 using ELF format, the first
expression is the alignment request in bytes. For example ‘.align 8" advances the location
counter until it is a multiple of 8. If the location counter is already a multiple of 8, no
change is needed.

For other systems, including the i386 using a.out format, and the arm and strongarm, it
is the number of low-order zero bits the location counter must have after advancement. For
example ‘.align 3’ advances the location counter until it a multiple of 8. If the location
counter is already a multiple of 8, no change is needed.

This inconsistency is due to the different behaviors of the various native assemblers
for these systems which GAS must emulate. GAS also provides .balign and .p2align

40 Using as

directives, described later, which have a consistent behavior across all architectures (but
are specific to GAS).

7.4 .ascii "string"...

.ascii expects zero or more string literals (see Section 3.6.1.1 [Strings], page 21) sep-
arated by commas. It assembles each string (with no automatic trailing zero byte) into
consecutive addresses.

7.5 .asciz "string". ..

.asciz is just like .ascii, but each string is followed by a zero byte. The “z” in ‘.asciz’
stands for “zero”.

7.6 .balign[wl] abs-expr, abs-expr, abs-expr

Pad the location counter (in the current subsection) to a particular storage boundary.
The first expression (which must be absolute) is the alignment request in bytes. For example
‘.balign 8’ advances the location counter until it is a multiple of 8. If the location counter
is already a multiple of 8, no change is needed.

The second expression (also absolute) gives the fill value to be stored in the padding
bytes. It (and the comma) may be omitted. If it is omitted, the padding bytes are normally
zero. However, on some systems, if the section is marked as containing code and the fill
value is omitted, the space is filled with no-op instructions.

The third expression is also absolute, and is also optional. If it is present, it is the
maximum number of bytes that should be skipped by this alignment directive. If doing
the alignment would require skipping more bytes than the specified maximum, then the
alignment is not done at all. You can omit the fill value (the second argument) entirely by
simply using two commas after the required alignment; this can be useful if you want the
alignment to be filled with no-op instructions when appropriate.

The .balignw and .balignl directives are variants of the .balign directive. The
.balignw directive treats the fill pattern as a two byte word value. The .balignl directives
treats the fill pattern as a four byte longword value. For example, .balignw 4,0x368d will
align to a multiple of 4. If it skips two bytes, they will be filled in with the value 0x368d
(the exact placement of the bytes depends upon the endianness of the processor). If it skips
1 or 3 bytes, the fill value is undefined.

7.7 .byte expressions

.byte expects zero or more expressions, separated by commas. Each expression is as-
sembled into the next byte.

Chapter 7: Assembler Directives 41

7.8 .comm symbol , length

.comm declares a common symbol named symbol. When linking, a common symbol in
one object file may be merged with a defined or common symbol of the same name in
another object file. If 1d does not see a definition for the symbol—just one or more common
symbols—then it will allocate length bytes of uninitialized memory. length must be an
absolute expression. If 1d sees multiple common symbols with the same name, and they do
not all have the same size, it will allocate space using the largest size.

When using ELF, the .comm directive takes an optional third argument. This is the
desired alignment of the symbol, specified as a byte boundary (for example, an alignment
of 16 means that the least significant 4 bits of the address should be zero). The alignment
must be an absolute expression, and it must be a power of two. If 1d allocates uninitialized
memory for the common symbol, it will use the alignment when placing the symbol. If no
alignment is specified, as will set the alignment to the largest power of two less than or
equal to the size of the symbol, up to a maximum of 16.

The syntax for . comm differs slightly on the HPPA. The syntax is ‘symbol .comm, length’;
symbol is optional.

7.9 .data subsection

.data tells as to assemble the following statements onto the end of the data subsection
numbered subsection (which is an absolute expression). If subsection is omitted, it defaults
to zero.

7.10 .def name

Begin defining debugging information for a symbol name; the definition extends until
the .endef directive is encountered.

This directive is only observed when as is configured for COFF format output; when
producing b.out, ‘.def’ is recognized, but ignored.

7.11 .desc symbol, abs-expression

This directive sets the descriptor of the symbol (see Section 5.5 [Symbol Attributes],
page 33) to the low 16 bits of an absolute expression.

The ‘.desc’ directive is not available when as is configured for COFF output; it is only
for a.out or b.out object format. For the sake of compatibility, as accepts it, but produces
no output, when configured for COFF.

7.12 .dim

This directive is generated by compilers to include auxiliary debugging information in
the symbol table. It is only permitted inside .def/.endef pairs.

‘.dim’ is only meaningful when generating COFF format output; when as is generating
b.out, it accepts this directive but ignores it.

42 Using as

7.13 .double flonums

.double expects zero or more flonums, separated by commas. It assembles floating
point numbers. The exact kind of floating point numbers emitted depends on how as is
configured. See Chapter 8 [Machine Dependencies|, page 63.

7.14 .eject

Force a page break at this point, when generating assembly listings.

7.15 .else

.else is part of the as support for conditional assembly; see Section 7.35 [.if], page 45.
It marks the beginning of a section of code to be assembled if the condition for the preceding
.if was false.

7.16 .elseif

.elseif is part of the as support for conditional assembly; see Section 7.35 [.if],
page 45. It is shorthand for beginning a new .if block that would otherwise fill the entire
.else section.

7.17 .end

.end marks the end of the assembly file. as does not process anything in the file past
the .end directive.

7.18 .endef

This directive flags the end of a symbol definition begun with .def.

‘.endef’ is only meaningful when generating COFF format output; if as is configured
to generate b.out, it accepts this directive but ignores it.

7.19 .endfunc

.endfunc marks the end of a function specified with .func.

7.20 .endif

.endif is part of the as support for conditional assembly; it marks the end of a block
of code that is only assembled conditionally. See Section 7.35 [.if], page 45.

7.21 .equ symbol, expression

This directive sets the value of symbol to expression. It is synonymous with ‘.set’; see
Section 7.68 [.set], page 55.

The syntax for equ on the HPPA is ‘symbol .equ expression’.

Chapter 7: Assembler Directives 43

7.22 .equiv symbol, expression

The .equiv directive is like .equ and .set, except that the assembler will signal an
error if symbol is already defined.

Except for the contents of the error message, this is roughly equivalent to

.ifdef SYM
.err

.endif

.equ SYM,VAL

7.23 .err

If as assembles a .err directive, it will print an error message and, unless the ‘-Z’ option
was used, it will not generate an object file. This can be used to signal error an conditionally
compiled code.

7.24 .exitm

Exit early from the current macro definition. See Section 7.50 [Macro|, page 49.

7.25 .extern

.extern is accepted in the source program—for compatibility with other assemblers—
but it is ignored. as treats all undefined symbols as external.

7.26 .fail expression

Generates an error or a warning. If the value of the expression is 500 or more, as will
print a warning message. If the value is less than 500, as will print an error message. The
message will include the value of expression. This can occasionally be useful inside complex
nested macros or conditional assembly.

7.27 .file string

.file tells as that we are about to start a new logical file. string is the new file name.
In general, the filename is recognized whether or not it is surrounded by quotes ‘"’; but
if you wish to specify an empty file name, you must give the quotes—"". This statement
may go away in future: it is only recognized to be compatible with old as programs. In
some configurations of as, .file has already been removed to avoid conflicts with other
assemblers. See Chapter 8 [Machine Dependencies], page 63.

44 Using as

7.28 .fill repeat , size , value

repeat, size and value are absolute expressions. This emits repeat copies of size bytes.
Repeat may be zero or more. Size may be zero or more, but if it is more than 8, then it
is deemed to have the value 8, compatible with other people’s assemblers. The contents of
each repeat bytes is taken from an 8-byte number. The highest order 4 bytes are zero. The
lowest order 4 bytes are value rendered in the byte-order of an integer on the computer as
is assembling for. Each size bytes in a repetition is taken from the lowest order size bytes
of this number. Again, this bizarre behavior is compatible with other people’s assemblers.

size and value are optional. If the second comma and value are absent, value is assumed
zero. If the first comma and following tokens are absent, size is assumed to be 1.

7.29 .float Honums

This directive assembles zero or more flonums, separated by commas. It has the same
effect as .single. The exact kind of floating point numbers emitted depends on how as is
configured. See Chapter 8 [Machine Dependencies], page 63.

7.30 .func namel,label]

.func emits debugging information to denote function name, and is ignored unless the
file is assembled with debugging enabled. Only ‘--gstabs’ is currently supported. Ilabel
is the entry point of the function and if omitted name prepended with the ‘leading char’
is used. ‘leading char’ is usually _ or nothing, depending on the target. All functions
are currently defined to have void return type. The function must be terminated with
.endfunc.

7.31 .global symbol, .globl symbol

.global makes the symbol visible to 1d. If you define symbol in your partial program,
its value is made available to other partial programs that are linked with it. Otherwise,
symbol takes its attributes from a symbol of the same name from another file linked into
the same program.

Both spellings (‘.globl’ and ‘.global’) are accepted, for compatibility with other as-
semblers.

On the HPPA | .global is not always enough to make it accessible to other partial
programs. You may need the HPPA-only .EXPORT directive as well. See Section 8.10.5
[HPPA Assembler Directives|, page 95.

7.32 .hidden names

This one of the ELF visibility directives. The other two are .internal (see Section 7.39
[.internal], page 46) and .protected (see Section 7.58 [.protected], page 52).

This directive overrides the named symbols default visibility (which is set by their bind-
ing: local, global or weak). The directive sets the visibility to hidden which means that
the symbols are not visible to other components. Such symbols are always considered to be
protected as well.

Chapter 7: Assembler Directives 45

7.33 .hword expressions

This expects zero or more expressions, and emits a 16 bit number for each.

This directive is a synonym for ‘.short’; depending on the target architecture, it may
also be a synonym for ‘.word’.

7.34 .ident

This directive is used by some assemblers to place tags in object files. as simply accepts
the directive for source-file compatibility with such assemblers, but does not actually emit
anything for it.

7.35 .if absolute expression

.if marks the beginning of a section of code which is only considered part of the source
program being assembled if the argument (which must be an absolute expression) is non-
zero. The end of the conditional section of code must be marked by .endif (see Section 7.20
[.endif], page 42); optionally, you may include code for the alternative condition, flagged by
.else (see Section 7.15 [.else], page 42). If you have several conditions to check, .elseif
may be used to avoid nesting blocks if/else within each subsequent .else block.

The following variants of .if are also supported:

.ifdef symbol
Assembles the following section of code if the specified symbol has been defined.

.ifc stringl, string2
Assembles the following section of code if the two strings are the same. The
strings may be optionally quoted with single quotes. If they are not quoted,
the first string stops at the first comma, and the second string stops at the end
of the line. Strings which contain whitespace should be quoted. The string
comparison is case sensitive.

.ifeq absolute expression
Assembles the following section of code if the argument is zero.

.ifeqs stringl, string?2
Another form of .ifc. The strings must be quoted using double quotes.

.ifge absolute expression
Assembles the following section of code if the argument is greater than or equal
to zero.

.ifgt absolute expression
Assembles the following section of code if the argument is greater than zero.

.ifle absolute expression
Assembles the following section of code if the argument is less than or equal to
Zero.

.iflt absolute expression
Assembles the following section of code if the argument is less than zero.

46 Using as

.ifnc stringl,string?2.
Like .ifc, but the sense of the test is reversed: this assembles the following
section of code if the two strings are not the same.

.ifndef symbol

.ifnotdef symbol
Assembles the following section of code if the specified symbol has not been
defined. Both spelling variants are equivalent.

.ifne absolute expression
Assembles the following section of code if the argument is not equal to zero (in
other words, this is equivalent to .if).

.ifnes stringl, string2
Like .ifegs, but the sense of the test is reversed: this assembles the following
section of code if the two strings are not the same.

7.36 .incbin "file" [,skip[,count]]

The incbin directive includes file verbatim at the current location. You can control
the search paths used with the ‘-I’ command-line option (see Chapter 2 [Command-Line
Options|, page 13). Quotation marks are required around file.

The skip argument skips a number of bytes from the start of the file. The count argument
indicates the maximum number of bytes to read. Note that the data is not aligned in any
way, so it is the user’s responsibility to make sure that proper alignment is provided both
before and after the incbin directive.

7.37 .include "file"

This directive provides a way to include supporting files at specified points in your source
program. The code from file is assembled as if it followed the point of the .include; when
the end of the included file is reached, assembly of the original file continues. You can control
the search paths used with the ‘-I’ command-line option (see Chapter 2 [Command-Line
Options|, page 13). Quotation marks are required around file.

7.38 .int expressions

Expect zero or more expressions, of any section, separated by commas. For each expres-
sion, emit a number that, at run time, is the value of that expression. The byte order and
bit size of the number depends on what kind of target the assembly is for.

7.39 .internal names

This one of the ELF visibility directives. The other two are .hidden (see Section 7.32
[.hidden|, page 44) and .protected (see Section 7.58 [.protected|, page 52).

This directive overrides the named symbols default visibility (which is set by their bind-
ing: local, global or weak). The directive sets the visibility to internal which means that
the symbols are considered to be hidden (ie not visible to other components), and that
some extra, processor specific processing must also be performed upon the symbols as well.

Chapter 7: Assembler Directives 47

7.40 .irp symbol,values. . .

Evaluate a sequence of statements assigning different values to symbol. The sequence of
statements starts at the .irp directive, and is terminated by an .endr directive. For each
value, symbol is set to value, and the sequence of statements is assembled. If no value is
listed, the sequence of statements is assembled once, with symbol set to the null string. To
refer to symbol within the sequence of statements, use \symbol.

For example, assembling
.irp param,1,2,3
move d\param, sp@-
.endr

is equivalent to assembling
move d1,sp@-
move d2,sp@-
move d3, sp@-

7.41 .irpc symbol, values. . .

Evaluate a sequence of statements assigning different values to symbol. The sequence
of statements starts at the .irpc directive, and is terminated by an .endr directive. For
each character in value, symbol is set to the character, and the sequence of statements is
assembled. If no value is listed, the sequence of statements is assembled once, with symbol
set to the null string. To refer to symbol within the sequence of statements, use \symbol.

For example, assembling

.irpc param, 123
move d\param, sp@-
.endr

is equivalent to assembling

move d1,sp@-
move d2, sp@-
move d3, sp@-

7.42 .lcomm symbol , length

Reserve length (an absolute expression) bytes for a local common denoted by symbol.
The section and value of symbol are those of the new local common. The addresses are
allocated in the bss section, so that at run-time the bytes start off zeroed. Symbol is not
declared global (see Section 7.31 [.globall, page 44), so is normally not visible to 1d.

Some targets permit a third argument to be used with .1lcomm. This argument specifies
the desired alignment of the symbol in the bss section.

The syntax for .lcomm differs slightly on the HPPA. The syntax is ‘symbol .1lcomm,
length’; symbol is optional.

7.43 .lflags

as accepts this directive, for compatibility with other assemblers, but ignores it.

48 Using as

7.44 .line line-number

Change the logical line number. line-number must be an absolute expression. The next
line has that logical line number. Therefore any other statements on the current line (after
a statement separator character) are reported as on logical line number line-number — 1.
One day as will no longer support this directive: it is recognized only for compatibility with
existing assembler programs.

Warning: In the AMD29K configuration of as, this command is not available; use the
synonym .1n in that context.

Even though this is a directive associated with the a.out or b.out object-code formats,
as still recognizes it when producing COFF output, and treats ‘.1ine’ as though it were
the COFF ‘.1n’ if it is found outside a .def/.endef pair.

Inside a .def, ‘.1line’ is, instead, one of the directives used by compilers to generate
auxiliary symbol information for debugging.

7.45 .linkonce [type]

Mark the current section so that the linker only includes a single copy of it. This may be
used to include the same section in several different object files, but ensure that the linker
will only include it once in the final output file. The .linkonce pseudo-op must be used
for each instance of the section. Duplicate sections are detected based on the section name,
so it should be unique.

This directive is only supported by a few object file formats; as of this writing, the only
object file format which supports it is the Portable Executable format used on Windows
NT.

The type argument is optional. If specified, it must be one of the following strings. For
example:

.linkonce same_size

Not all types may be supported on all object file formats.
discard Silently discard duplicate sections. This is the default.
one_only Warn if there are duplicate sections, but still keep only one copy.

same_size
Warn if any of the duplicates have different sizes.

same_contents
Warn if any of the duplicates do not have exactly the same contents.

7.46 .1n line-number

‘.1n’ is a synonym for ‘.1line’.

7.47 .mri val

If val is non-zero, this tells as to enter MRI mode. If val is zero, this tells as to exit
MRI mode. This change affects code assembled until the next .mri directive, or until the
end of the file. See Section 2.8 [MRI mode], page 15.

Chapter 7: Assembler Directives 49

7.48 .list

Control (in conjunction with the .nolist directive) whether or not assembly listings
are generated. These two directives maintain an internal counter (which is zero initially).
.list increments the counter, and .nolist decrements it. Assembly listings are generated
whenever the counter is greater than zero.

By default, listings are disabled. When you enable them (with the ‘-a’ command line
option; see Chapter 2 [Command-Line Options], page 13), the initial value of the listing
counter is one.

7.49 .long expressions

.long is the same as ‘.int’, see Section 7.38 [.int], page 46.

7.50 .macro

The commands .macro and .endm allow you to define macros that generate assembly
output. For example, this definition specifies a macro sum that puts a sequence of numbers
into memory:

.macro sum from=0, to=5
.long \from

Jif \to-\from

sum "(\from+1)",\to
.endif

.endm

With that definition, ‘SUM 0,5’ is equivalent to this assembly input:

.long O
.long
.long
.long
.long
.long

g wN -

.macro macname
.macro macname macargs . . .
Begin the definition of a macro called macname. If your macro definition re-
quires arguments, specify their names after the macro name, separated by com-
mas or spaces. You can supply a default value for any macro argument by
following the name with ‘=deflt’. For example, these are all valid .macro state-
ments:

.macro comm
Begin the definition of a macro called comm, which takes no argu-

ments.

50 Using as

.macro plusl p, pl

.macro plusl p pl
Fither statement begins the definition of a macro called plusi,
which takes two arguments; within the macro definition, write ‘\p’
or ‘\pl’ to evaluate the arguments.

.macro reserve_str pl=0 p2
Begin the definition of a macro called reserve_str, with two argu-
ments. The first argument has a default value, but not the second.
After the definition is complete, you can call the macro either as
‘reserve_str a, b’ (with ‘\p1’ evaluating to a and ‘\p2’ evaluating
to b), or as ‘reserve_str ,b’ (with ‘\p1’ evaluating as the default,
in this case ‘0’, and ‘\p2’ evaluating to b).

When you call a macro, you can specify the argument values either by position,
or by keyword. For example, ‘sum 9,17’ is equivalent to ‘sum to=17, from=9’.

.endm Mark the end of a macro definition.
.exitm Exit early from the current macro definition.
\a@ as maintains a counter of how many macros it has executed in this pseudo-

variable; you can copy that number to your output with ‘\@’, but only within
a macro definition.

7.51 .nolist

Control (in conjunction with the .1list directive) whether or not assembly listings are
generated. These two directives maintain an internal counter (which is zero initially).
.list increments the counter, and .nolist decrements it. Assembly listings are generated
whenever the counter is greater than ze